
- Softwar? Engineering Institute

Formal Specification of Software

CD ~ Curriculum Module SEI-CM-8-1 .0 DTIC
CV)S i,'1 *4O -N

IC

-Si) 91-00919

-- --- LI91a 31 004

Formal Specification of Software

SEI Curriculum Module SEI-CM-8-1 .0
October 1987

1Dcii

Alfs Berztiss ~-
University of Pittsburgh ~ ~ ~~

~ Carnegie Mellon University
Software Engineering Institute

This work was sponsored by the U.S. Department of Defense.

Draft For Public Review

This technical report was prepared for the

SEI Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

JOHN S. HERMAN,Capt, USAF

This work is sponsored by the U.S. Department of Defense.

Copyright © 1987 by Carnegie Mellon University.

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S. Government
agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information
Center, Attn: FORA. Cameron Station, Alexandria, VA 22304-6145.
Copies of this document are also available through the National Technical Information Service. For information on ordering,
please contact NTIS directly: National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

Use of any tracemarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Formal Specification of Software

Contents
Capsule Description I
Philosophy I

Objectives I
Prerequisite Knowledge 2
Module Content 3

Outline 3

Annotated Outline 3
Teaching Considerations 9

Suggested Schedules 9
Support Materials 9

Projects and Exercises 9
Bibliography 10

@

[A support materials package, SEI-SM-8,

is available for this module.

SEI-CM-8-1.0 Draft For Public Review iii

Formal Specification of Software
Module Revision History

Version 1.0 (October 1987) Draft for public review

iv Draft For Public Review SEi-CM-8-1 .0

0

Formal Specification of Software

Capsule Description produces specifications.

Central to the development of a large software sys-
This module introduces methods for the formal spec- tern is a contract between the developer and a client.
ification of programs and large software systems, This document expresses what the system is to ac-
and reviews the domains of application of these complish in precise terms. Parts of the document
methods. Its emphasis is on the functional can be expressed formally, i.e., in a language that
properties of software. It does not deal with the has formally defined syntax and semantics. Other
specification of programming languages, the specifi- parts cannot be so expressed. Our concern here is
cation of user-computer interfaces, or the verifica- limited to the formal component.
tion of programs. Neither does it attempt to cover
the specification of distributed systems. This module will

* survey a range of formal specification
methods;

" establish a taxonomy of software, and re-
Philosophy late specification methods to this

taxonomy;
The term specification has various interpretations. 9 expose students to a broad range of ex-
Under one interpretation, specification is the process amples of actual formal specifications;
of producing documents that prescribe the require- * introduce validation of specifications;
ments, design, behavior and other characteristics of a and
system or system component [Standard83]. Under
this interpretation specification also denotes all the relate formal specification to topics such
documents produced by the process. A requirements as knowledge representation, verifica-
statement defines what a software system is to do, tion, transformation of specifications into
and a design document describes how the system is programs, and reusability.
to do this. However, requirements are generally de- This module introduces material necessary to under-
fined by iterating through two stages. The first stage stand current trends in the software development
produces an informal statement in natural language. process, which are in the direction of increased for-
This statement is then translated, as far as feasible, malism. It should be a prerequisite of modules that
into a precise language defined by formal syntax and deal with design. There is a close relationship be-
semantics. For lack of a separate term to describe tween requirements analysis, formal specification,
this formal statement we shall call it specification, and design. This suggests that the material dealing
or, when emphasis is needed, formal specification. with these topics should be studied at about the same
In our usage, then, specification denotes (1) the time. Indeed, the three topics can be the basis for an
process of producing various characterizations of introductory course in software engineering.
software, and (2) the product of a specific stage of
this process, namely a formal statement of what a
software system is to do, where the other products of
the specification process are an informal require- Objectives. ments statement and a design. To avoid unnecessary
repetition this document uses the term specification
to refer to the stage of the specification process that There is an abundance of literature on formal speci-

fication, with a variety of different approaches de-

SEI-CM-8-1.0 Draft For Public Review 1

Formal Specification of Software

veloped by different groups, such as programming
methodologists, information system developers, and
control system developers. One purpose of this
module is to introduce some measure of uniformity.

A student who has mastered the material of this
module can be expected to

* understand the central role of formal
specification in the software develop-
ment process;

" be able to partition a system into compo-
nents and apply appropriate specification
methods to these components;

" have participated in a number of specifi-
cation exercises, at least one of which
has been a group project, and to have
participated in the validation of specifi-
cations.

Because of the centrality of this module, ideally an
entire semester should be spent on it. However, it
can be combined with requirements analysis and de-
sign in a single course. The group project may have
to be omitted then, but it must be understood that the
experience of working in a team is an important
component of education in software engineering,
and this experience should still be provided as part
of some other module.

Prerequisite Knowledge

The student must have sufficient experience to be
able to appreciate the need for proper specifications.
This experience may have come from the ad hoc de-
velopment of a software system of some complexity
or, better still, from attempts to modify a poorly doc-
umented and poorly modularized system. Typically,
the student should have written programs containing
at least 500 lines of source code, and should have
experience with multiple implementations of stan-
dard data structures such as stacks and trees.

The student must have an understanding of discrete
mathematics at least equivalent to that provided by a
three-credit-hour college course. The need here is
for mathematical maturity, rather than specific
course content. Individual topics, such as predicate
logic with quantification, can be introduced as re-
quired in the module itself.

There needs to be some understanding of the place
of formal specification in the total process of soft-
ware characterization. [Rombach87] deals with this
topic in some detail.

2 Draft For Public Review SEI-CM-8-1.0

Formal Specification of Software

Module Content

Outline f. Specification methodologies
3. Information-control systems

I. Principles of Formal Specification a. The SF specification language
1. Definition of formal specification b. Example: Library system
2. Requirements and specification c. Example: Elevator

a. Client-specifier interaction IV. The Process of Formal Specification

b. Abstraction of domain-specific concepts 1. Mechanics of specification
c. Modularization a. Specification teams
d. Validation b. The specification development log

3. Specification and design c. Graphical aids and other documentation
a. Declarative and operational styles d. An infrastructure for specification

b. Design as algorithm selection 2. Validation and verification
c. Transformational development of software a. Formal methods

II. Formal Specification of Programs b. Walkthroughs
1. Axiomatic specification c. Executable specifications
2. Abstract models 3. Reusability of specifications

3. Set theory
*, 4. Predicate logic

5. Programming languages in specification Annotated Outline
6. Evaluation of the specification methods

a. Abstract data types The detailed outline of this module is given in a de-
b. Data transformers clarative style, i.e., as a description of the various

7. Examples aspects of formal specification of software, rather

a. Data types: NatO, set, stack, queue, etc than as an imperative prescription.

b. Data transformer: Text formatter General references: [Berg821, [BirrelI85J, [Cohen861,

111. Formal Specification of Persistent Systems [Freeman84], [Gehani86], [Liskov791, [Rama-III.Foral Seciicaion f PrsitentSysemsmoorthy78], [Specs87].

1. Persistent data bases

a. Nature of information systems
b. Conceptual schema I. Principles of Formal Specification

c. Behavioral aspects 1. Definition of formal specification

d. Temporal and spatial aspects of information Central to the software development process is a
systems contract between a client and a software developer.

e. Specification of knowledge bases The contract is prealgorithmic in that it defines the
observable properties of a software system without

f. Specification methodologies defining the methods that are to provide it with these
2. Processes properties. This document has to capture both func-

a. Sequencing of events tional and non-functional properties of the software
system to be developed. Functional properties de-

b. Synchronization of processes fine the outputs of the system; non-functional
c. Real time properties relate to the processes by which the out-

puts are obtained. An example of a functional prop-
d. Interaction with sensors erty is the requirement that no output line of a text
e. Fail-safe behavior formatter be longer than 132 characters. The re-

quirement that an elevator system respond to a call

SEI-CM-8-1.0 Draft For Public Review 3

Formal Specification of Software

within 10 seconds for 95% of all calls is non- References: [Beierle84], (Birreli85], [Boehm76],
functional. Some parts of the contract can be ex- [Parnas72].
pressed in a language with formal syntax and seman- 3. Specification and design
tics-they constitute a formal specification.

a. Declarative and operational styles
In principle, functional properties can be specified

formally, but we do not have adequate languages for b. Design as algorithm selection
the formal specification of many of the non- c. Transformational development of software
functional components of the contract. Still, as
much as possible should be formally specified, for Specifications follow either a declarative or an oper-
three reasons. First. a contract should be un- ational style. A declarative specification describes
ambiguous, and we need the precision of a formal the result of an operation with no reference to the
specification language to ensure this. Second, for- operation; an operational specification defines the
malization imposes a uniform style on the contract. process by which the result is obtained. Sometimes
The third reason relates to verification, which estab- a declarative definition can be so complicated that
lishes that a software system is consistent with the the only sensible way to describe the result is to
contracL Therefore, if the final software product is describe the process. However, the description of
to be verified, its specification has to be comparable the process should still be at an abstract level. One
with the product, and, because code is written in advantage of the declarative style is that it gives the
formally defined languages, specifications also have designer complete freedom in algorithm selection,
to be formal. Note, however, that in order to avoid a but the operational style makes it possible to turn
bias towards a particular implementation, a specifi- specifications into software by means of transfor-
cation language should be independent of the lan- mations, i.e., to bypass the design phase.
guage of implementation of the software system. References: (Bauer8l], [Beierle84], [Finance84],

References: (Anderson84], (Balzer79], [Freeman84], [Gries8i 1, [Liskov86], [Olive86], [Partsch83],
[Heininger8O], [Pamas77]. [Partsch86], [Zave84.

2. Requirements and specification II. Formal Specification of Programs

a. Client-specifier interaction 1. Axiomatic specification

b. Abstraction of domain-specific concepts The algebra of sets can be defined by means of
c. Modularization axioms that give precise meaning to operations such

as union and complementation. But set algebra need
d. Validation not be regarded as a mathematical system alone. We

Requirements analysis and specification rarely fol- can interpret sets and operations on sets as a data

low each other in strict sequence. Rather, formal type, and the axioms then provide a formal specifi-

specification is an interactive process in which cation of this data type. This notion has been ex-
clarifications of the requirements document have to tended to what are commonly known as data struc-
be sought from the client, and the process of tures. The method is surveyed in [Berztiss83]; fur-
clarification may well indicate defects in the require- ther examples can be found in [Cohen86] and
ments definition. A common vocabulary is estab- [Mannaa5]; [Ehrig85] provides a comprehensive

ment deiniton.A cmmonvocbulry i esab-treatment. [Burstall81] deals with the combination of
lished in this interaction, and the most important en- axiomat sciIa with the cifiation

tities of the vocabulary become the data types for the axiomatic specification with other specification

application, i.e., the concrete entities of the appli- styles Goguen86 is a technical overview of later

cation are turned into abstract components of the development of this approach.

specification. Abstract data types are often identi- 2. Abstract models
fled with modules; modularization then may take
place at some point in the requirements analysis or Implementation of data types specified by axioms is
formal specification stage. rather difficult. Also, the axiomatic specification of

some data structures requires an inordinately large
Up to some limit, the greater the investment in the number of axioms. Abstract modeling gets around
testing of a specification, the lower the total soft- these difficulties by the selection of an abstract im-
ware development cost. Hence, while a specifica- plementation of a data type in terms of a more basic
tion is being developed, it should be checked against type, e.g., a stack in terms of a sequence, and a stack
the client's requirements to determine that it reflects operation is then described by the effects it has on
them faithfully. This is validation. Validation will the sequence. This approach is contrasted to
suggest changes in the specification; such changes axiomatic specification in [Liskov79]. It is used in
are easier to implement in a modularized specifi- the Alphard [ShawBl and CLU [Liskov86] lan-
cation. guages, which permit both specification (by abstract

modeling) and implementation of data types. A dif-

4 Draft For Public Review SEI-CM-8-1.0

Formal Specification of Software

ferent approach is to associate a state with each data ion language (Kowalski85]. For an interesting ex-
object and define operations in terms of state ample of a Prolog specification see [Veloso85].
changes [Claybrook82]. The Vienna Development Functional programming has also been used in spec-
Method (VDM) is a very elaborate language based ification [Turner85, Henderson86]. Both logical pro-
on the abstract model approach. An introduction grams and functional programs are regarded as their
with good examples can be found in [Cohen86]; own specifications, with "implementation" of a func-
some very large application studies are described in tional specification considered merely as a search
[Bjorner82]; [Jones78] is the reference manual. for greater efficiency.

3. Set theory 6. Evaluation of the specification methods

A group at Oxford University has developed the a. Abstract data types
specification language Z, which is based on set the- b. Data transformers
ory and logic. A rather complicated symbolism is
built up by defining relations, functions, orders, se- Let us partition data types into three kinds. First are
quences, and bags in terms of sets. This approach some fundamental data types, such as booleans,
can be regarded as a variant of the abstract model reals, and integers. Next are basic structuring types,
approach, with set theory providing the abstract namely sets, bags, sequences, and maps (finite
model. [Abrial8O] is an early exposition of Z; functions). The third kind consists of devices; they
[Hayes87] contains extensive examples. are used for the implementation of algorithms in the

design phase. For the fundamental data types and
4. Predicate logic the basic structuring types axiomatic specification,
A computational unit (function, procedure) can be abstract models, and the set theoretical approach are
Apecomputationaldunite(functionnprocedure)ucanrbe more or less equally easy to apply. The choice is
specified by predicates describing the output from then determined by other considerations. Either the
the uniL Generally two predicates are needed--one axiomatic or the set theoretical approach should be
def es the appearance of the output, the other re- used when the program derived from the specifi-
lates the output to the input For example, sorting is cation is to be formally verified; the abstract model
specified by predicates that indicate that the output permits easier implementation. As regards devices,
of the unit is in fact sorted and that it is a permuta- some can be defined as special cases of sequences,

pion of the input. An excellent introduction to this e.g., stacks and queues, and arrays (sequences of
approach, and how it relates to program verification, sequences). Other devices need to be defined inde-
can be found in [Gies8]. Predicate logic is coin- pendently, e.g., binary trees. With some devices the
bined with axiomatic specification in Larch. This number of axioms can become too large forspecification language has a common shared lan- axiomatic specification to be practicable, but the ab-

guage in which data types, called traits in Larch, are stc sel ap pra ctiare bt the ab-

defined axiomatically, and interface languages (one stract model approach and Z are both still ap-

for each implementation language under plicable.

consideration), in which operations from the traits Only some of the operations of an abstract data type
are used in predicative specification of program are regarded as basic, e.g., an operation that reads
units. For introductions to Larch see [Horning85], the top element of a stack. An operation that, say,
[Guttag85], and [Liskov86]; more detail can be found replaces the top two elements of a stack with a
in [Guttag86a] and [Guttag86b]. single new element is a derived operation. How-

ever, the distinction between basic and derived
5. Programming languages in specification operations is not sharp. In one context we might

We have already mentioned Alphard and CLU, regard matrix multiplication basic, in another de-
which can be regarded as languages for both specifi- rived. Even the classification of types is not sharp:
cation and programming. Use of Ada for specifi- text may be regarded as fundamental or as a special
cation has been advocated [Ada85], but this has to be case of the sequence.
approached with some caution. If the specification Still, we shall make a distinction between basic and
is syntactically correct, then we already have a pro- derived operations of a data type, and refer to the
gram. Now, under the assumption that specification latter as data transformers. A data transformer ac-
is prealgorthmic, a program should not be regarded cepts one or more objects as input and transforms
as a specification, but programs, too, leave low-level them into output objects. The specification has to
algorithms undefined (e.g., the algorithm for multi- describe the output and relate the output to the input.
plication implied by the expression a*b). Indeed, For this predicate logic is the best choice, possibly
since both formal specifications and programs are applied in the context of Larch or Z.
written in languages with formal syntax and seman-
tics, the distinction between the two can become Another way of looking at data transformation is in
blurred. The logic programming language Prolog is terms of data streams. Then the input to a data
another candidate for consideration as a specifica- transformer is one or more input streams. The out-

SEI-CM-8-1.0 Draft For Public Review 5

Formal Specification of Software

put may be a single value (the inner product of two Section II relates to the generation of results by in-
vectors), a new data stream (formatted text), or sev- tensive computation. Such computations are the
eral streams (a phase of a merge sort). The data concern of classical programming. A persistent data
streams-the preorder sequence of a binary tree, base, on the other hand, is a resource that is updated
sorted values from a heap, a pseudorandom number and consulted over an extended period of time. A
sequence-can be produced by generators. A dis- system based on a persistent database, with capabil-
cussion of generators can be found in [Griswold8l]. ities for changing the database and responding to

queries, is known as an information system. For
A data transformer may be specified in a number of discussions of the issues involved in the specifica-
different ways. Consider a spelling checker that tion of information systems see [BubenkoSO,
takes a text (intext) and a dictionary, and generates Brodie84, Borgida85a, Jardine84]. We shall survey
the set of words found in the text but not in the the issues briefly here.
dictionary. At one level, the specification may
simply be a predicate that defines the output as the A conceptual schema describes the organization of
set difference of the input text and the dictionary, the database. The schema may consist of relation
regarded as sets of words. At another level, the tables, or a structure of entity sets and relationships
spelling checker may be regarded as being com- [Chan76l, or a collection of data types that consist of
posed of generators that produce, in turn, text sepa- sets and functions [Berztiss86a, Berztiss86b.
rated into words (split), a sorted word list (sort), the Events cause changes in the database. A behavioral
same list with duplicates removed (reduce), and the model superimposed on the conceptual schema re-
list with words found in the dictionary removed lates to the database changes. It defines either the
(diff). Each generator can be defined by predicates, valid states of the database (declarative approach) or
and the spelling checker as a whole can be defined the valid events (operational approach) [Olive86].
by functional composition: errors = diff (reduce
(sort (split (intext))), dictionary). Under the first ap- An example of a declaration is the formal expression
proach it has to be verified that an implementation is corresponding to the statement "the salary of an em-
in fact consistent with the specification. The func- ployee may never be greater than the salary of the
tional composition of the second approach is its own supervisor of the employee". This approach has the
specification. advantages that deductive processes may be applied

to the declarations, and therefore it is sometimes ,
Unfortunately it is an overspecification in that the called the deductive approach. Moreover, the meth-
particular sequencing of the operations is really an ods by which database integrity is maintained are
algorithm. However, specifications written in terms left open. Under the operational approach one
of predicates tend to be very complex, and the better would check that a proposed new salary for an em-
readability of a specification as a composition of ployee is no larger than that of the supervisor and no
operations may outweigh the loss of freedom smaller than those of the subordinates of this em-
brought about by the overspecification. It has to be ployee, and the new salary would only take effect if
emphasized that the writing of the predicates that these preconditions were satisfied. An operational
specify a text formatter, say, is a very difficult task, specification is easier to convert into a prototype im-
and the result is very difficult to read. Indeed, the plementation. An operational specification may also
reading difficulty may prevent adequate validation be easier to formulate, but not always.
of a specification. In such a case it may be worth-
while to sacrifice freedom of choice for better Suppose that the data base consists of finite sets and
readability [Naur82]. functions. A distinction needs to be made between

data types of the application, such as employee,
7. Examples library catalog, and the data types set and function,

a. Data types: NatO, set, stack, queue, etc which implement the data types of the application.
The operational specification indicates under what

b. Data transformer: Text formatter conditions the sets and functions may change, but
III. Formal Specification of Persistent Systems the actual changes are brought about by set and

1. Persistent data bases function operations. The latter would have been
a. Nature of information systems specified by the techniques of Section II.

b. Conceptual schema An information system should be able to deal with
time references in the database and with sequencing

c. Behavioral aspects of events (temporal aspect), and with distribution of
d. Temporal and spatial aspects of information the database over different sites, particularly in an

systems office setting (spatial aspect), but methodologies for
specifying temporal and spatial aspects are still un-

e. Specification of knowledge bases der development. For some approaches to the speci-
f. Specification methodologies fication of office automation see [Gibbs83,

6 Draft For Public Review SEI-CM-8-1 .0

Formal Specification of Software

Chang85]. An information system that can cope dicate what happens when a sensor fails. The speci-
with incomplete and inconsistent data, and includes fication for the controlling software does not have to
inference-making capabilities, is known as a knowl- define how the controlled system behaves when the
edge system. Specification methodologies for controller fails, but it does have to define how the
knowledge systems are in a research stage, but controller is to start up again after a failure. Issues
progress is being made toward their development relating to fault-tolerance are discussed in
[Borgida85b, Brodie86]. [Avizienis85, Leveson87].

The entire topic of specification of information sys- Most of the aspects discussed here have related to
tems is still unsettled. Numerous specification performance rather than functionality. We should
methodologies have been proposed, with varying de- therefore determine which non-functional require-
grees of formality [O11e82, tlle83, O11e86, ments can and which cannot be specified formally.
Brodie84, Furtado86]; we have tried to distill fea- A general characterizatio, is a major research task,
tures from all these methodologies into a composite but the distinction can be made in individual in-
approach called SF-it is described in Section Ili.3. stances. Consider a bank of elevators, a module for
Note that Larch has been used to specify an infor- the operation of an individual elevator, and a dis-
mation system [Wing87], but its general suitability patcher module for the control of the entire bank of
for this purpose remains to be established, elevators. The operation of a single elevator is de-

termined by its users an" the dispatcher, anci a speci-
2. Processes fication can be written quite easily. However, the

a. Sequencing of events dispatcher is to see to it that, for example, an
b. Synchronization of processes elevator will reach a caller within 10 seconds for

95% of all calls. At this time the only nontrivial
c. Real time formalization of this requirement seems to be al-
d. Interaction with sensors gorithmic, but an algorithm is a component of de-

e. Fail-safe behavior sign rather than specification.

f. Specification methodologies The three most prominent examples of specificationlanguages for systems that include control features. A process is the controlled evolution of a system in are Gist [Feather87], PAISLey [Zave86], and
time, where the controlling actions normally depend MSG.84 [Berzins85, Borzins86I, but see also
on the states of a database. The controlled system is [Dasarathy85]. These approaches emphasize the ex-
generally external to the controlling software, e.g., ecutability of specifications. Also, synchronization
an elevator. We shall refer to a system comprising a of processes was not the primary consideration in
database and a process or a system of processes as the design of these specification languages. A speci-
an information-control system. Again it is useful to fication method that does emphasize synchroniza-
think in terms of events, where the events change the tion is Hoare's CSP [Hoare78]; it has been applied to
database or the controlled system. The simplest the elevator problem [Schwartz87]. Another ap-
control operation is the ordering of events in se- proach has been to use temporal logic, which is an
quences. The sequence of operations of a data trans- extension of classical logic that enables it to deal
former may be indicated by functional composition, with time. Here the primary concern is the suita-
but the sequencing of events in an information- bility of the specification methodology for the verifi-
control system needs to be indicated by more com- cation of an implementation of a system of processes
plicated control mechanisms such as path expres- -- [Manna8l] is a good exposition. A common fea-
sions or traces (declarative approach) [CampbeII74, ture of all these approaches is the minor attention
Furtado85], or message passing (operational given to the specification of database operations.
approach) [Berzins85]. Specification of distributed systems is a specialized

topic that is not included in this module--for a sur-
Asequicatin of asstevents haveto defines a ohew vey see [Alford85], but note that Z may be used tospecification of a system may have to define how seiydsrbtdsses[ae8]

processes are synchronized. The control specify distributed systems [Hayes87].

mechanisms mentioned above are adequate for this 3. Information-control systems
purpose as well. Sometimes, however, events must a. The SF specification language
take place at a specific time (in the United States,
clocks were advanced one hour at midnight on April b. Example: Library system
4, 1987) or after a specific delay (holders of overdue c. Example: Elevator
library books must be reminded after a grace period

* expires). The specification methodology must be It was noted earlier that there is a large variety of
able to deal with such real-time aspects. Further, a methodologies for the specification of information
controller receives inputs, by means of sensors, from systems, but rarely do they address control issues.
the system it controls. The specification has to in- On the other hand, languages for the specification of

SEI-CM-8-1.0 Draft For Public Review 7

Formal Specification of Software

control processes do not deal adequately with data- totype is denved from the specification by
base issues. The specification language SF (Set- "correctess-preserving- tansformauons, then it
Function) (Berztiss86a. Berztiss86b] has features for must necessanly be consistent with the specfwau .,
dealing with both information and control; it is a i.e, there is no need for further verification
language for the specification of information-control
systems. It does not attempt to deal with the specifi- References: [Batzer85], [Be r82]. [Bouge85l,
cation of basic data types-when a queue is needed, [HendetsonSS6, fKemmerSSJ. [Turner85]. [Your-

it is imported, under the assumption that it has been dCf86j.
specified in some other framework, say Larch. 3. Reusability of specifications

Specifications in SF of a library system and of an Recent work on reusabihty. parucularly by Big-
elevator are to be found in the support material gerstaff and Richter. suggests that rmuse of spocifi.
package for this module. cations is more pracucable than reuse of designs or

IV. The Process of Formal Specification code. A possible appicaUion of reusable specifica-
tions is in the software factory. So far. reusa=thty in

I. Mechanics of specification this context has been confined to code. but it should
a. Specification teams be extended to specificatuons. The rmusability of

b. The specification development log specifications depends on modulanazon. For ex-
ample, when a text (omatter is being specified. a

c. Graphical aids and other documentation specification module for the text data type should

d. An infrastructure for specification already exist. This module is remeved, and opera-
tions from it used in the specification of operauons

Specifications of large systems are themselves large to define the apphcauon. Any of the laer that are
and complex, and their development is necessarily a deemed to be of general interest can be added to the
group activity. In fact, writing the specification may text module. Moreover, it should be indicated in the
take longer than building the system from that speci- documentation of the text module that it has been
fication. Further, requirements typically change used in the specifc ation of the text foriatter. A
while a specification is being produced. It is essen- type of semantic net is thus created that should help
tial that all assignments to members of a specifi- in retrieving components for reuse at a later time.
cation team and all requirements changes are docu- Even research on the reuse of specifications has not
mented in a log kept by the specificaLion team. A properly begun yeL
register of other documentaton should also be main-
tained. Such documentation may contain function- References: [Baggerstatf87], [Matsumoto84].
ality diagrams of basic data types and devices, data
flow diagrams, E-R (Entity-Relationship) diagrams,
state transition diagrams, Petri nets, etc. Specifi-
cation teams should be provided with a proper in-
frastructure to perform their task efficiently, i.e.,
they should have access to electronic conferencing
facilities and the like, and they should be provided
with tools for configuration control, cross-
referencing, etc.

References: [Bidoit86], [Chen76], [Martin85],
(Peterson8l], [Ramamoorthy86], [Reisig85].

2. Validation and verification

a. Formal methods

b. Walkthroughs

c. Executable specifications

The consistency and sufficient completeness of al-
gebraic specifications can be established, but we
regard this as part of verification, and verification is
not emphasized in this module. Instead, validation
is stressed, particularly the static analysis technique
known as walkthroughs. Moreover, prototype im-
plementation of the specifications of information-
control systems is rather easy, and dynamic test
methods can be applied to the prototype. If the pro-

8 Draft For Public Review SEI-CM-8-1.0

Formal Specjication of Software

Teaching Considerations

Suggested Schedules finite-state transition diagram and Petm net that were
actually used to come to an understanding of the

As already indicated in the statement of objectives, problem (and not added as a decoration after all
an entire semester, nominally 40 hours, should work had been done) are also included.
ideally be spent on this module. The following Teams of students in a software specification course
rough breakdown is suggested: at the University of Pittsburgh specified a student

" Principles of Formal Specification: 10 registration system or an elevator controller. The
hours teams kept logs of their activities; an example is in-

" Formal Specification of Programs: 10 cluded.

hours
" Formal Specification of Persistent Sys-

tems: 10 hours Projects and Exercises
*The Process of Formal Specification: 10

hours Several projects and exercises are suggested in the
No finer breakdown will be attempted. Too much support materials package for this module. Some of
depends on the background of the instructor, the the projects are:
composition of the class, and the rapport between in- * a student registration system
structor and class. Moreover, if a major specifica-
tion project is undertaken, topics in different sections e atystamo oorated lgaloc
would have to be intermixed, so that lecture material

* could support project development effectively. The 9 a dry-cleaning/formalwear-remntal busi-
material on Principles of Specification is to come in ness
large part from [Rombach87]. Smaller specifications can be designed for:

If teaching of specification is combined with re- * a car cruise-control system;
quirements analysis and design, a fair amount of in- . a telephone dialing system
tegration can be undertaken, particularly of require-
ments analysis and specification, and the breakdown * a traffic light system
below is suggested: e the n-queens problem

& Principles of Software Development: 10 It is highly recommended that the instructor do sev-
hours eral specification exercises before teaching this ma-

* Specification and Design Methodologies: terial.
20 hours

" The Process of Software Development:
10 hours

Support Materials

The support materials package for this module con-
tains specifications of the library system and
elevator examples written in the SF specification
language for information-control systems, as well asO a specification of the text formatter expressed in
terms of predicates. Specifications of these systems
produced by other approaches can be found in
[Specs87]. With regard to the elevator example, the

SEI-CM-8-1.0 Draft For Public Review 9

Formal Specification of Software

Bibliography

Although there are several good books that deal with Anderson84
the specification of what we have called basic opera- T. Anderson. ed. Software Requirements, Specifica-
tions of abstract data types and data transformers, tion and Testing Oxford. England: Blackwel.
there is yet no comprehensive text that would cover 1984.
the specification of information-control systems as
well. One of the purposes of this module is to inte- A collection of non-technical papers on the opics
grate the separate developments; a textbook to sup-
port this endeavor should become available in 1988.
For the time being, however, instructors of this mod- AvlZlenls5
ule will have to read rather extensively. Some of the Avizienis, A. "The N-version Approach to Fault-
papers have been marked essential reading. These Tolerant Software." IEEE Trans. Software Eng.
papers should be read by the instructor, who can SE-Il (1985), 1491-1501.
then decide what should be assigned to the class to Abstract: Evaluation of the N-version software ap-
read on the basis of the background of the students. proach to the tolerance of design faults is reviewed.

Principal requirements for the implementation of N-
Abral80 version software are summarized and the DEDIX
Abrial, J. R., S. A. Schuman, and B. Meyer. distributed supervisor and testbed for the execution

"Specification Language." In On the Construction of N-version software is described. Goals of cur-
rent research are presented and some potential ben-of Programs, R. M. McKeag and A. M. Macnaghten, efits of the N-version approach are identjfied.

eds. Cambridge, England: Cambridge University

Press, 1980, 343-410. Contains strong arguments that link fault-toleranceto effective specification. Should be examined.
This is an early description of Z, a specification
language based on sets. Balzer79

Ada85 Balzer, R., and N. Goodman. "Principles of Good
Software Specification and their Implication forGoldsack, S. I., ed. Ada for Specification: Pos- Specification Languages." Proc. IEEE Conf. Speci-

sibilities and Limitations. Cambridge, England: fications of Reliable Software. Silver Spring, Md.:
Cambridge University Press, 1985. IEEE Computer Society Press, 1979, 58-67.

Although primarily an investigation of Ada as a Reprinted in [Gehani86I, 25-39.
specification language, this book is also a valuable Abstract: Careful consideration of the primary uses
survey of specification languages in general, and of of software specifications leads directly to three cri-
the process that transforms a specification into code. teriaforjudging specifications, which are then used
The view is taken that Ada can be used for both to develop eight design principles for "good" speci-
coding and specification, but that two different sets fications. These principles, in turn, imply a number
of semantics then have to exist for the two contexts. of requirements for specification languages that
At least some parts of this book should be read. strongly constrain the set of adequate specification

languages and identify the need for several novel
Alford85 capabilities such as historical and future
Alford, M. W., J. P. Ansart, G. Hommel, references, elimination of variables, and result
L. Lamport, B. Liskov, G. P. Mullery, and specification.
F. B. Schneider. Distributed Systems: Methods and A catalog of eight principles and eighteen implica-
Tools for Specification. Berlin: Springer-Verlag, tions for the design of specification languages. Es-
1985. Springer-Verlag Lecture Notes in Computer sential reading.
Science, No. 190.

Notes for a course on the specification of distributed Balzer85
systems, i.e., a subset of what we have called Balzer, R. "A 15 Year Perspective on Automatic
information-control systems in this module. Programming." IEEE Trans. Software Eng. SE-Il

(1985), 1257-1268.

Abstract: Automatic programming consists not only

10 Draft For Public Review SEI-CM-8-1.0

Formal Specification of Software

of an automatic compiler, but also some means of requirements definition to verified implementation.
acquiring the high-level specification to be corn- (By now the tools have been implemented. The
piled, some means of determining that it is the in- result is an impressive system that has not received
tended specification. and some (interactive) means the recognition it deserves.)
of translating this high-level specification into a
lower-level one which can be automatically corn- Berg82
piled. Berg, H. K., W. E. Boebert. W. R. Franta, and

We have been working on this extended automatic T. G. Moher. Formal Methods of Program Verifi-
programming problem for nearly 15 years, and this cation and Specification. Englewood Cliffs, N. J.:
paper presents our perspective and approach to this Prentice-Hall, 1982.
problem and justifies it in terms of our successes
and failures. Much of our recent work centers on Here the primary concern is verification, with speci-
an operational testbed incorporating usable aspects fication considered only as it relates to verification.
of this technology. This testbed is being used as a Still, the chapter on specification gives a useful
prototyping vehicle for our own research and will overview of specification of the objects of classical
soon be released to the research community as a programming, and should be read. The bibliogra-
framework for development and evolution of Coin- phy is extensive (166 entries).
mon Lisp systems.

Balzer summarizes his experiences and obser- Berzins85
vations regarding the transformational development Berzins, V., and M. Gray. "Analysis and Design in
of software. Should be examined. MSG.84: Formalizing Functional Specifications."

IEEE Trans. Software Eng. SE-I 1 (1985), 657-670.

Bauer8l Abstract: Model building is identified as the most
Bauer, F. L., et at. "Programming in a Wide important part of the analysis and design process
Spectrun Language: A Collection of Examples." for software systems. A set of primitives to support
Science of Comp. Programming 1 (1981), 73-114. this process is presented, along with a formal lan-

guage, MSG.84, for recording the results of anal-
Abstract: The paper exemplifies programming in a ysis and design. The semantics of the notation is
wide spectrum language by presenting styles which defined in terms of the actor formalism, which is
range from non-operative specifications-using ab- based on a message passing paradigm. The auto-
stract types and tools from predicate logic as well matic derivation of a graphical form of the specf-
as set theory--over recursive functions, to cation for user review is discussed. Potentials for
procedural programs with variables. Besides a computer-aided design based on MSG.84 are in-

number of basic types, we develop an interpreter for dicated.

parts of the language itself, an algorithm for apply-

ing transformation rules to program represen- Defines MSG.84, which supports the specification
tations, a text editor, and a simulation of Backus' of control systems via the actor formalism of mes-
functional programming language. sage passing.

An introduction to the CWP (Computer-aided
Intuition-guided Programming) approach. The Berzlns86
same language is used for specifications and Berzins, V., M. Gray, and D. Naumann.
machine-oriented programs, with transformations "Abstraction-Based Software Development."
converting the former into the latter. Comm. ACM 29 (1986), 402-415.

BelerleB4 Abstract: A five-year experience with abstraction-
based software-development techniques in the uni-

Beierle, C., M. Gerlach, R. Gobel, W. Olthoff, versity environment indicates that the investment re-
R. Raulefs, and A. Voss. "Integrated Program De- quired to support the paradigm in practice is
velopment and Verification." In Software returned in terms of greater ability to control com-
Validation, H. L. Hausen, ed. Amsterdam: North- plexity in large projects-provided there exists a set
Holland, 1984, 189-205. of software tools sufficient to support the approach.

Abstract: A survey of an integrated program devel- Reports on classroom experience with MSG.84, the
-oment and verification support environment is specification language introduced in [Berzins85].
pr:*.sented. The system supports the entire range
from requirements definitions to verified programs. Berztlss83

A sophisticated set of tools is proposed that sup- Berztiss, A. T., and S. Thatte. "Specification and

ports the entire system development process from Implementation of Abstract Data Types." In

SEI-CM-8-1.0 Draft For Public Review 11

Formal Specification of Software

Advances in Computers. Vol. 22. New York: Aca- between devices, such as queues and binary trees.
demic Press, 1983, 295-353. and the data types of an information system are

survey of the equational algebraic specification o pointed OuL Should be read because it is a fairly
coherent statement of the philosophical foundations

abstract dam types. of this module.

Berztlss86a Bidoit86
Berztiss, A. "The Set-Function Approach to Con- Bidoit, M., C. Choppy, and F. Voisin. "The
ceptual Modeling." In Information System Design ASSPEGIQUE Specification Environment." In
Methodologies: Improving the Practice, T. W. Wle, Recent Trends in Data Type Specification,
H. G. Sol, and A. A. Verrijn-Stuart, eds. Amster- H. J. Kreowski, ed. Berlin: Springer-Verlag, 1986,
dam: North-Holland, 1986, 107-144. 54-72. Springer-Verlag Infonnatikfachberichte, No.

Abstract: We examine the design of information 116.
systems and develop a methodology for the con- Describes an environment for the development of
struction of conceptual schemas. We call it the set- algebraic specifications. In particular, the environ-
function (SF) methodology, and use it to express a ment contains a graphical tool that displays the
conceptual schema for the IFIP Working Con- functionality diagram for an abstract data type.
ference example. Novel features of our approach:
(i) a deliberate attempt to integrate the specfication
of information systems with the formalisms of data Blggerstaff87
type specification in programming methodology, (ii) Biggerstaff, T., and C. Richter. "Reusability
simultaneous concerns with theoretical foundations Framework, Assessment, and Directions." IEEE
and simplicity of use, (iii) separation of static and Software 4, 2 (March 1987), 41-48.
dynamic aspects of the specification to allow one to
use only as much of the methodology as is neces- Abstract: Reusability is widely believed to be a key
sary for a particular task, (iv) a strong concern with to improving software development productivity and
reliability of the conceptual schema being defined, quality The reuse of software components
including considerations of rapid prototyping, and amplifies the software developer's capabilities. It
(v) a design that should foster the use of fourth and results in fewer total symbols in a system's devel-
fifth generation system development tools. opment and in less time spent on organizing those

symbols.
Introduces the SF specification language and uses it However, while reusability is a strategy of great
on the IFIP Working Conference case study. The pomie. i is a straten lagely
specification has a major flaw in that it is not promise, it is one whose promise has been largely
modularized. The paper contains a fairly extensive unfulfilled.
discussion of properties of specifications of infor- Expresses the belief that the greatest payoffs can be
mation systems in general. expected from reuse of specifications by means of

what the authors call semantic binding. Should be
Berztiss86b read.
Berztiss, A. "Data Abstraction in the Specification
of Information Systems." Proc. IFIP World Con- BlrreII85
gress 1986. Amsterdam: North-Holland, 1986, Birrell, N. D., and M. A. Ould. A Practical Hand-
83-90. book for Software Development. Cambridge,

Abstract: Four classes of computational activities England: Cambridge University Press, 1985.

are identified, namely changes in an information A rich source of examples of the use of various
base, look-ups, computation of function values by communication tools, e.g., diagrammatic represen-
computational rules, and processes, and it is argued rations such as data flow diagrams and Petri nets.
that they require different specification
mechanisms. Our particular concern is information Blorner82
bases, which we define as collections of sets and
functions. Their changes are specified in terms of Bjomer, D., and C. B. Jones. Formal Specification
events, and temporal aspects are taken care of by a and Software Development. Englewood Cliffs,
fully separate "responder". The methodology is il- N. J.: Prentice-Hall, 1982.
lustrated by the specification of a system for manag- An introduction to the Vienna Development Method
ing checking accounts by a bank. (VDM), together with a rich selection of examples

The SF language is used to specify an account han- of its application. VDM has been used with consid-
dling system for a bank. Some essential differences erable success in the specification of data trans-

formers.

12 Draft For Public Review SEI-CM-8-1.0

Formal Specification of Software

Boehm76 Bouge85. Boehm, B. "Software Engineering." IEEE Trans. Bouge, L., N. Choquet, L. Fribourg, and
Computers C-25 (1976), 1226-1241. M. C. Gaudel. "Application of Prolog to Test Sets

a definition of the Generation from Algebraic Specifications." In
Abstact Ths paer rovdesProc. TAPSOFT '8S, Vol. 2. Berlin: Springer-

term "software engineering" and a survey of the Vrlag 1985, 2 85 . Springer-
current state of the art and likely future trends in Verlag, 1985, 261-275. Springer-Vedag Lecture
the field. The survey covers the technology avail- Notes in Computer Science, No. 186.
able in the various phases of the software life cycle Abstract: We present a method and a tool for gen-
-requirements engineering, design, coding, test, erating test sets from algebraic data type specifi-
and maintenance--and in the overall area of soft- cations. We give formal definitions of the basic
ware management and integrated technology- concepts required in our approach of functional
management approaches. It is oriented primarily testing. Then we discuss the problem of testing al-
toward discussing the domain of applicability of gebraic data types implementations. This allows
techniques (where and when they work), rather than the introduction of additional hypotheses and thus
how they work in detail. To cover the latter, an the description of an effective method for gener-
extensive set of 104 references is provided. ating test sets. The method can be improved by

Provides data which show that error correction is using PROLOG. Indeed, it turns out that PROLOG
least costly when the errors are detected and is a very well suited tool for generating test sets in
repaired during requirements analysis and specifi- this context. Applicability of the method is dis-
cation, cussed and a complete example is given.

A specialized paper, but indicative of an interesting
Borglda85a mix of theory and practice that characterizes much
Borgida, A. "Features of Languages for the Devel- of the current research on specification.
opment of Information Systems at the Conceptual
Level." IEEE Software 2, 1 (Jan. 1985), 63-72. Brodle84

Abstract: Conceptual modeling languages make in- Brodie, M. L., J. Mylopoulos, and J. W. Schmidt,

formation systems easier to design and maintain by eds. On Conceptual Modelling: Perspectives from
using vocabularie- that relate naturally and directly Artificial Intelligence, Databases, and Programming
to the "real world" of many computer applications. Languages. New York: Springer-Verlag, 1984.

A useful set of principles for the design of specifi- A collection of papers dealing with the application
cation languages for information systems. The au- of information systems to knowledge representa-
thor emphasizes the important property that specifi- tion, etc. Should be examined.
cations of information systems can be automatically
translated into implementations. Should be read. Brodle86

Brodie, M. L., and J. Mylopoulos, eds. On Knowl-
Borglda85b edge Base Management Systems. New York:
Borgida, A., S. Greenspan, and J. Mylopoulos. Springer-Verlag, 1986.
"Knowledge Representation as the Basis for Re-
quirements Specification." Computer 18, 4 (April A collection of papers dealing with the transfor-1985, 8291.mation of information systems into knowledge sys-
1985), 82-91. tems. Should be examined, but not as relevant to

Abstract: Specification of many kinds of knowledge the specification of information systems as
about the world is essential to requirements engi- [Brodie84].
neering. Research on knowledge representation in
artificial intelligence provides a wealth of relevant Bubenko8O
techniques that can be incorporated into specifica- Bubenko, J. "Information Modeling in the Context
tion languages. of System Development." Proc. IFIP World Con-

An investigation of the relationship between the gress 1980. Amsterdam: North-Holland, 1980,
knowledge representation techniques of artificial in- 395-411.
telligence and the specification of information sys- Abstract: The concepts of an information system
tems. Required reading for one view of the direc- and information requirements are examined. Antion in which the methodology for the developmentadinoatnreuemtsreeand.A
on inwhich te m hod fe eveomn appraisal of significant results in the areas of infor-
of information systems should be moving. mation system specification and of data modeling is

presented. A framework for specification of goal-
oriented information requirements for an informa-

SEI-CM-8-1.0 Draft For Public Review 13

Formal Specification of Software

tion system is outlined. It is argucd that a total sequences of events.
requirement specification must include an abstract
model of the enterprise. The model should view the Chang85
application in an extended time perspective. The Chang, S. K., and W. L. Chan. "Transformation and
main part of this paper is concerned with concepts Verification of Office Procedures." IEEE Trans
usefulfor specification of such a model. Software Eng. SE-I1 (1985), 724-734.

This is one of the most widely cited papers on the
development of information systems. It is partic- Abstract: An office procedure is a structured set of
ularly useful for its discussion of time in the specifi- office activities for accomplishing a specific office

cation of information systems. The philosophy un- task. A unified model, called office procedure
derlying the SF specification language of model (OPM), is presented to model office proce-
[Berztiss86a] has much in common with the views dures. The OPM describes the relationships among
expressed in this paper. Required reading. messages, databases, alerters, and activities. The

OPM can be used to coordinate and integrate the
activities of an office procedure. The OPM also

Burstalt8l allows the specification of office protocols in an of-
Burstall, R. M., and J. A. Goguen. "An Informal In- fice information system. A methodology for the ver-
troduction to Specifications Using CLEAR." In The ification of office procedures is presented. With this
Correctness Problem in Computer Science, Boyer, methodology, potential problems in office proce-
R. S., and J. S. Moore, eds. Academic Press, Lon- dure specification, such as deadlock, unspecified
don, 1981, 185-213. Also in [Gehani86], 363-389. message reception, etc., can be analyzed effectively.

Abstract: Precise and intelligible specifications are The office procedure model presented in this paper
a prerequisite for any systematic development of allows the specification of office protocols in an
programs, as well as being the starting point for office information system.
correctness proofs. This paper describes "Clear", a
language for giving modular and well-structured Chen76
specificaions; the informal presentation gives ex- Chen, P. P. "The Entity-Relationship Model:
amples and sketches the algebraic background. Toward a Unified View of Data." ACM Trans.

This very important paper contains an informal in- Database Sys. 1 (1976), 9-36.
troduction to institutions, which permit different Abstract: A data model, called the entity-
styles to be combined in one specification. Re- relationship model, is proposed. This model incor-
quired reading. porates some of the important semantic information

about the real world. A special diagrammatic tech-
Campbell74 nique is introduced as a tool for database design.
Campbell, R. H., and A. N. Habermann. "The Speci- An example of database design and description
fication of Process Synchronization by Path using the model and the diagrammatic technique is
Expressions." In Proc. Internat. Symp. Operating given. Some implications for data integrity, infor-
Systems, Rocquencourt, 1974, Gelenbe, E., and mation retrieval, and data manipulation are dis-

C. Kaiser, eds. Berlin: Springer-Verlag, 1974, cussed.

89-102. Springer-Verlag Lecture Notes in Computer The entity-relationship model can be used as a basis
Science, No. 16. for unification of different views of data: the net-

work model, the relational model, and the entity set
Abstract: A new method of expressing synchroniza- model. Semantic ambiguities in these models are
tion is presented and the motivations and con- analyzed. Possible ways to derive their views of
siderations which led to this method are explained, data from the entity-relationship model are
Synchronization rules, given by 'path expressions', presented.
are incorporated into the type definitions which are
used to introduce data objects shared by several This paper introduces the E-R model, which has
synchronous processes. It is shown that the probably had the most significant influence on sub-
method's ability to express synchronization rules is sequent methodologies for the development of in-
equivalent to that of P and V operations, and a formation systems. Required reading.
means of automatically translating path expressions
to existing primitive synchronization operations is Claybrook82
given. Claybrook, B. G. "A Specification Method for Spec-

Path expressions have been used to analyze permis- ifying Data and Procedural Abstractions." IEEE
sible patterns of interleaving of processes in a sys- Trans. Software Eng. SE-8 (1982), 449-459.
tem. They could be used equally well to analyze Abstract: A specofcation method designed primar-

14 Draft For Public Review SEI-CM-8-1.0

Formal Specification of Software

ily for specifying data abstractions, but suitable for Feather87
describing procedural abstractions as well, is de- Feather, M. S. "Language Support for the Specifi-
scribed. The specification method is based on the cation and Development of Composite Syatems."
abstract model approach to specifying abstractions. ACM Trans. Prog. Lang. and Sys. 9 (1987),
Several data abstractions and procedural abstrac- AC8- ra4.
tions are specified and a proof of implementation 198-234.
correctness is given for one of the data abstractions Abstract: When a complex system is to be realized
-- a symbol table. as a combination of interacting components, devel-

The abstract model approach is used to specify the opment of those components should commence from
da trat omol aproah d t simplementation a specification of the behavior required of the corn-
data type of symbol table, and the pro ementation posite system. A separate specification should be
based on this specification is proven correct, used to describe the decomposition of that system

into components. The first phase of implementation
Cohen86 from a specification in this style is the derivation of
Cohen, B., W. T. Harwood, and M. I. Jackson. The the individual component behaviors implied by
Specification of Complex Systems. Wokingham, these specifications.
England: Addison-Wesley, 1986. The virtues of this approach to specification are ex-

A fairly short (143 pages) introduction that explores pounded, and specification language features that

some aspects of the electronic office by means of are supportive of it are presented. It is shown how

equational algebraic specification and the Vienna these are incorporated in the specification language

Development Method (VDM). Specification of Gist, which our group has developed. These issues

concurrent systems is briefly touched on as well. are illustrated in a development of a controller for

Listings of centers of current research activity in the elevators serving passengers in a multistory build-

more theoretical approaches to specification, and of ing.

experimental specification languages are particular- This is the most recent in a series of papers dealing
ly valuable. Essential reading. with the specification language Gist. Gist is based

on 'histories', which correspond to taces of event
Dasarathy85 occurrences.
Dasarathy, B. "Timing Constraints on Real-Time
Systems: Constructs for Expressing Them, Methods Finance84
of Validating Them." IEEE Trans. Software Eng. Finance, J. P., M. Grandbastien, N. Levy, A. Quere,
SE-I1 (1985), 80-86. and J. Souquieres. "SPES: A Specification and

Abstract: This paper examines timing constraints Transformation System." Proc. 2nd AFCET Soft-

as features of real-time systems. It investigates the ware Eng. Conf. Oxford, England: North Oxford
various constructs required in requirements lan- Academic, 1984, 145-151.
guages to express timing constraints and considers Abstract: The aim of the SPES project is to con-
how automatic test systems can validate systems struct and transform formal specifications of corn-
that include timing constraints. Specifically, fea- puter problems, in a methodical way. The structure
tures needed in test languages to validate timing used expresses relations between data and results,
constraints are discussed. One of the distinguishing within modules called texts. The structure is de-
aspects of three tools developed at GTE scribed using abstract types. Transformations ap-
Laboratories for real-time systems specification and plied to the specification make it possible top mod-
testing is in their extensive ability to handle timing ify it, with a view to building a program. This ap-
constraints. Thus, the paper highlights the timing proach, which applies a user assistance system, is
constraint features of these tools. illustrated with a simple example.

Considers timing constraints in telephone dialing. Describes a system to assist the software developer
in the construction of a specification and in the

Ehrig85 transformation of the specification into a program.
Ehrig, H., and B. Mahr. Fundamentals of Algebraic
Specification I: Equations and Initial Semantics. Freeman84
Berlin: Springer-Verlag, 1985. Freeman, F., and Wasserman, A. I., eds. Tutorial on

A comprehensive study of equational algebraic Software Design Techniques, 4th ed. Silver Spring,

* specification of data types. A book for the special- Md.: IEEE Computer Society Press, 1984.
ist, but has a very useful bibliography. A collection of papers that relate primarily to soft-

ware design, but a number of significant contribu-
tions to specification methodology are also in-

SEI-CM-8-1.0 Draft For Public Review 15

Formal Specification of Software

cluded. Good browsing. lated to operations within the model.

Discusses features that need to be added to a speci-
Furtado85 fication language for conventional information sys-
Furtado, A. L., and T. S. E. Maibaum. "An Infor- tems to adapt it to the context of the electronic of-
mal Approach to Formal (Algebraic) Specifica- fice. Should be read.
tions." ComputerJ. 28 (1985), 59-67.

Abstract: Formal techniques exist for the crucial Goguen86
specification phase in the design of systems, includ- J. A. Goguen. "One, None, a Hundred Thousand
ing database applications. We briefly indicate the Specification Languages." Proc. IFIP World Con-
potential benefits of the so-called abstract data type gress 1986. Amsterdam: North-Holland, 1986,
discipline and show how it might be made more 995-1003.
palatable to the non-mathematician. This is done
through the mechanism of traces. This tool is used Abstract: Many different languages have been pro-
both as a mechanism for modelling (in an ex- posed for specification, verification, and design in
ecutable manner) the application and as a basis for computer science; moreover, these languages are
a methodology which can be used in the develop- based upon many different logical systems. In an
ment of aformal algebraic specification. attempt to comprehend this diversity, the theory of

institutions formalizes the intuitive notion of a
A very readable introduction to the use of traces of "logical system". A number of general linguistic
operations as a basis for reasoning about features have been defined "institutionally" and are
information-control systems. available for any language based upon a suitable

institution. These features include generic modules.

Furtado86 module hierarchies, "data constraints" (for data

Furtado, A. L., and E. J. Neuhold. Formal Tech- abstraction) and multiplex institutions (for combin-

niques for Data Base Design. Berlin: Springer- ing multiple logical systems). In addition, institu-

1986. tion morphisms support the transfer of results (as
Verlag, 1well as associated artifacts, such as theorem

A monograph that exposes designers of information provers) from one language to another. More gen-
system specifications to new developments in data erally, institutions are intended to support as much
abstraction and data modeling. One of the few pub- computer science as possible independently of the
lications in this area that considers control as well. underlying logical system.
Should at least be examined. This viewpoint extends from specication languages

to programming languages, where, in addition to
GehanI86 the programming-in-the-large features mentioned
Gehani, N., and A. D. McGettrick, eds. Software above, it provides a precise basis for a "wide

Specification Techniques. Wokingham, England: spectrum" integration of programming and specfiO-

Addison-Wesley, 1986. cations. A logical programming language is one
whose statements are sentences in an institution,

A collection of 21 papers, most of which have con- whose operational semantics is based upon deduc-
tributed significantly to shaping the field of soft- tion in that institution, giving a "closed world"for a
ware specification. Some are listed individually in program. This notion encompasses a number of
this bibliography, but the others should also be ex- modern programming paradigms, including func-
amined. tional, logic, and object-oriented, and has been use-

ful in unifying these paradigms, by unifying their
Gibbs83 underlying institutions, as well as in providing them

with sophisticated facilities for data abstraction and
Gibbs, S., and D. Tsichritzis. "A Data Modeling programming-in-the-large.
Approach for Office Information Systems." ACM
Trans. Office Info. Sys. 1 (1983),299-319. A wide-ranging but somewhat technical paper.

Contains useful references to Goguen's earlier work
Abstract: A data model for representing the struc- on data abstraction and specification languages.
ture and semantics of office objects is proposed. The references to OBJ2 are particularly relevant.
The model contains features for modeling forms,
documents, and other complex objects; these fea- Grles8l
tures include a constraint mechanism based on trig-
gers, templates for presenting objects in different Gries, D. The Science of Programming. New York:
media, and unformatted data types such as text and Springer-Verlag, 1981.
audio. The representation of common office objects The first part of this book is an excellent source for
is described. User-level commands may be trans- material on logic. Gries follows the philosophy that

16 Draft For Public Review SEI-CM-8-1.0

Formal Specification of Software

a program and its specification, in the form of asser- tures of the Larch Shared Language. It concludes. tions, should be developed side by side. This can with a brief discussion of how we expect Larch
work very well for programming-in-the-small. Shared Language Specifications to be used, a dis-

cussion of some of the more important design deci-

Grlswold8l sions, and a summary of the current status of the
Larch project. The second part of this paper is aGriswold, R. E., D. R. Hanson, and J. T. Korb. reference manual. A companion paper includes an

"Generators in Icon." ACM Trans. Prog. Lang. and extensive set of examples.

Sys. 3 (1981), 144-161.

Larch is a two-tiered specification language consist-
Abstract: Icon is a new programming language ing of components that are, respectively, independ-
that includes a goal-directed expression evaluation ent of and dependent on, the programming language
mechanism. This mechanism is based on used for the implementation. This paper defines the
generators-expressions that are capable of pro- independent components.
ducing more than one value. If the value produced
by a generator does not lead to a successful result,
the generator is automatically activated for an al- GuttagO6b
ternate value. Generators form an integral part of Guttag, J. V., and J. J. Homing. "A Larch Shared
Icon and can be used anywhere. In addition, they Language Handbook." Science of Comp. Program-
form the basis for the string scanning facility and ming 6 (1986), 135-157.
subsume some of the control expressions found inother languages. Several examples are given. Abstract: This handbook consists of a collection of

traits written in the Larch Shared Language, and is
This paper introduces the Icon concept of intended as a companion to the "Report on the
generators and gives examples of their application. Larch Shared Language". It should serve three dis-
It should be examined. tinct purposes: Provide a set of components that

can be directly incorporated into other specifica-
Guttag85 tions; Provide a set of models upon which other

Guttag, J. V., J. J. Homing, and J. M. Wing. "The specifications can be based; and help people to bet-

IEEE ter understand the Larch Shared Language by pro-Larch Family of Specification Languages."IE viding a set of illustrative examples.

Software 2, 5 (Sept. 1985), 24-36.

Abstract: Larch specifications are two-tiered. Companion article to [Guttagsa].

Each one has a component written in an algebraic
language and another tailored to a programming Hayes87
language. Hayes, I., ed. Specification Case Studies. Engle-

wood Cliffs, N. J.: Prentice-Hall, 1987.
An introduction to the specification language Larch.

Should be read, at least for an understanding of the A collection of specification case studies expressed
two-tiered approach to specification. The two- in the Z specification language. This language,
tiered approach permits Larch to be used for the which is based on set theory, was introduced by
specification of both abstract data types and data Abrial [Abrial8O], but is still evolving. The Z nota-
transformers, and, with somewhat less success, even tion is very compact, which may detract from
information systems. readability. A good source of projects.

GuttagO6a Heininger8O
Guttag, J. V., and J. J. Homing. "Report on the Heininger, K. L. "Specifying Software Require-
Larch Shared Language." Science of Comp. Pro- ments for Computer Systems: New Techniques and
gramming 6 (1986), 103-134. their Application." IEEE Trans. Software Eng. SE-6

Abstract: Each member of the Larch family of for- (1980), 2-13.
mal specification languages has a component de- Abstract: This paper concerns new techniques for
rived from a programming language and another making requirements specifications precise, con-
component common to all programming languages. cise, unambiguous, and easy to check for complete-
We call the former interface langvages, and the lat- ness and consistency. The technique is well-suited
ter the Larch Shared Language. for complex real-time software systems; they were

This paper presents version 1.1 of the Larch Shared developed to document the requirements of existing

Language. It has two major sections. The first part flight software for the Navy's A-7 aircrat. The

starts with a brief introduction to the Larch Project paper outlines the information that belongs in a re-
quirements document and discusses the objectivesand the Larch family of languages, and continues bhn h ehius ahtcnqei ecie

with an informal presentation of most of the fea- behind the techniques. Each technique is described

SEI-CM-8-1.0 Draft For Public Review 17

Formal Specification of Software

and illustrated with examples from the A-7 docu- Horning85
ment. The purpose of the paper is to introduce the Homing, J. J. "Combining Algebraic and Predica- ,
A-7 document as a model of a disciplined approach live Specifications in Larch." In Proc. TAPSOFT
to requirements specification; the document is '85, Vol. 2. Berlin: Springer-Verlag, 1985, 12-26.
available to anyone who wishes to see a fully Springer-Verlag Lecture Notes in Computer Science,
worked-out example of the approach. No. 186.

This paper emphasizes the specification of perfor-mance properties. The techniques are related to the Abstract: Recently there has been a great deal of
specification of of flight software for the A-7E air- theoretical interest in formal specifications. How-craft i ever, there has not been a corresponding increasein their use for software development. Meanwhile,

there has been significant convergence among for-
Henderson86 mal specification methods intended for practical
Henderson, P. "Functional Programming, Formal use.
Specifications, and Rapid Prototyping." IEEE The Larch project is developing tools and tech-
Trans. Software Eng. SE-12 (1986), 241250. niques intended to aid in the productive use offor-

Abstract: Functional programming has enormous mal specifications. This talk presents the combi-
potential for reducing the high cost of software de- nation of ideas, both old and new, that we are cur-
velopment. Because of the simple mathematical rently exploring.
basis of functional programming it is easier to de- One reason why our previous spec4ication methods
sign correct programs in a purely functional style were not very successful was that we tried to make a
than in a traditional imperative style. We argue single language serve too many purposes. To focus
here that functional programs combine the clarity the Larch project, we made some fairly strong as-
required for the formal specification of software de- sumptions about the problem we were addressing.
sign with the ability to validate the design by execu-
tion. As such they are ideal for rapidly prototyping Each Larch specification has two parts, written in
a design as it is developed. We give an example different languages. Larch interface languages are
which is larger than those traditionally used to ex- used to specify program units (e.g., procedures,
plain functional programming. We use this example modules, types). Their semantics is given by trans-
to illustrate a method of software design which ef- lation to predicate calculus. Abstractions appear-
ficiently and reliably turns an informal description ing in interface specifications are themselves speci-
of requirements into an executable formal specifi- fled algebraically, using the Larch Shared Lan-
cation. guage.

The intent of Henderson's paper is to support the A series of examples will be used to illustrate the
view that functional programs are their own specifi- use of the Larch Shared Language and the

cations, and that functional programming should LarchICLU interface language. The talk will con-
therefore become a primary tool in the software de- clude with notes on the key design choices for each
velopment process. of the languages, and for the method of combining

the two parts of a specification.

Hoare78 A fine introduction to the two-tiered specification
Hoare, C. A. R. "Communicating Sequential language Larch, with a discussion of formal specifi-

Processes." Comm. ACM 21 (1978), 666-677. cations in general included as a bonus.

Abstract: This paper suggests that input and output Jardine84
are basic primitives of programming and that Jardine, D. A., and A. R. Reuber. "Information
parallel composition of communicating sequential Semantics and the Conceptual Schema." Inform.
processes is a fundamental program structuring
method. When combined with a development of Sys. 9 (1984), 147-156.
Dijkstra's guarded command, these concepts are Abstract: The semantics of various proposals for
surprisingly versatile. Their use is illustrated by Conceptual Schema languages are compared and
sample solutions of a variety of functional program- contrasted. Concepts are defined using logic and
ming exercises. class theory notation, so that terminology is

A classic paper on parallel programming. Contains reduced to a common basis. A basis for handling
interesting examples, including a solution for the temporal aspects of an Information System is pro-
dining philosophers problem. vided.

A survey of methodologies for the specification of
information systems. The authors conclude that
temporal effects do not require any special treat-

18 Draft For Public Review SEI-CM-8-1.0

Formal Specification of Software

ment. use as a specification language is compatible not
only with conventional programming languages but

Jones78 also with programming languages based entirely on

Jones, C. B. "The Metalanguage: A Reference logic itself. In this paper I shall investigate the

Mnes, In The Vienna Development Method. The relation that holds when both programs and pro-
Manualn Te Vienn a C.velopm n eds. gram specifications are expressed informal logic.Meta-Language, D. B jorner and C. B. Jones, eds.

Berlin: Springer-Verlag, 1978, 218-277. Springer- In many cases, when a specification completely de-

Verlag Lecture Notes in Computer Science, No. 61. fines the relations to be computed, there is no syn-
tactic distinction between specification and pro-

Abstract: The recent work of the Vienna Labora- gram. Moreover the same mechanism that is used
tory on the subject of semantic definitions has used to execute logic programs, namely automated
the "denotational semantics" approach. Although deduction, can also be used to execute logic specifi-
this is a clear break with the earlier abstract inter- cations. The only difference between a complete
preter approach, the newer meta-language has tried specification and a program is one of efficiency. A
to preserve and even improve upon the readability program is more efficient than a specification.
of the earlier "VDL" notation. The meta-language Kowalski argues that a complete logical specifica-
described here has been used in the definitions of Kon is indistinguishable from a logical program; the
large programming languages and systems. This
paper is not a tutorial; rather it provides a refer- only observable difference is one of efficiency.

ence document for the meta-language. However, most specifications are incomplete in one
way or another.

The reference manual for the Vienna Development
Method. Leveson87

Leveson, N. G., and J. L. Stolzy. "Safety Analysis
Kemmerer85 Using Petri Nets." IEEE Trans. Software Eng.
Kemmerer, R. A. "Testing Formal Specifications to SE-13 (1987), 386-397.
Detect Design Errors." IEEE Trans. Software Eng. Abstract: The aplication of Time Petri net model-
SE-11 (Jan. 1985), 32-43. pp

ing and analysis techriques to safety-critical real-
Abstract: Formal specification and verification time systems is explored and procedures described
techniques are now used to increase the reliability which allow analysis of safety, recoverability, and
of software systems. However, these approaches fault-tolerance.
sometimes result in specifying systems that cannot
be realized or that are not usable. This paper dem- Discusses specification of real-time systems in

onstrates why it is necessary to test specifications which safety, recoverability, and fault-tolerance

early in the software life cycle to guarantee a sys- have to be provided. A readable paper.

tem that meets its critical requirements and that
also provides the desired functionality. Definitions Llskov79
to provide the framework for classifying the validity Liskov, B. H., and V. Berzins. "An Appraisal of
ofa functional requirement with respect to a formal Program Specifications." In Research Directions in
specification are also introduced. Finally, the de- Software Technology, P. Wegner, ed. Cambridge,
sign of two tools for testing formal specifications is MA: MIT Press, 1979, 276-301. Reprinted in
discussed. [Gehani86], 3-23.

Provides operational specifications in terms of an A survey, to about 1978, of different approaches to
abstract machine for the library example. Examines the specification of data types and data trans-
both rapid prototyping and symbolic execution. formers, with some discussion of parallel programs.

KowalskI85 Liskov86
Kowalski, R. "The relation between logic program- Liskov, B., and J. Guttag. Abstraction and Specitfi-
ming and logic specification." In Mathematical
Logic and Programming Languages, C. A. R. Hoare catton in Program Development. New York:
and J. C. Shepherdson, eds. Englewood Cliffs, N. J.: McGraw-Hill, 1986.
Prentice-Hall, 1985, 11-27. A textbook on the use of the CLU programming

language, which provides facilities for operationalAbstract: Formal logic is widely accepted as a pro- specifications in the development of software.

gram specification language in computing science. speication in the Lare spe.

It is ideally suited to the representation of knowl- There is also a brief introduction to the Larch speci-

edge and the description of problems without fication language, which has a more abstract orien-

regard to the choice of programming language. Its tation.

SEI-CM-8-1.0 Draft For Public Review 19

Formal Specification of Software

Manna8l Cliffs, N. J.: Prentice-Hall, 1985.
Manna, Z., and A. Pnueli. "Verification of Concur- Diagrams provide an excellent means of communi-
rent Programs: The Temporal Framework." In The cation between the software specifier and the client.
Correctness Problem in Computer Science, Boyer, However, a badly designed diagram can be a
R. S., and J. S. Moore, eds. Academic Press, Lon- hindrance rather than an aid. This compendium of
don, 1981, 215-273. diagramming techniques and tools emphasizes the

Abstract: This is the first in a series of reports difference between good and poor diagrams. This

describing the application of Temporal Logic to the book must be examined.

specification and verification of concurrent pro-
grams. Matsumo 84

We first introduce Temporal Logic as a tool for Matsumoto, Y. "Some Experiences in Promoting
reasoning about sequences of states. Models of Reusable Software: Presentation in Higher Abstract
concurrent programs based both on transition Levels." IEEE Trans. Software Eng. SE-JO (1984),
graphs and on liner-text representations are 502-513.
presented and the notions of concurrent and fair Abstract: In the Toshiba software factory, quality
executions are defined, control and productivity improvements are primary

The general temporal language is then specialized concerns. Emphasis is placed on reusing existing
to reason about those execution states and execu- software modules that have been proven correct
tion sequences that are fair computations of concur- through actual operation. To achieve a substantial
rent programs. Subsequently, the language is used degree of reuse, the software design process is
to describe properties of concurrent programs. viewed at several levels of abstraction. In this

The set of interesting properties is classified into paper, these levels of abstraction are defined, and

Invariance (Safety), Eventuality (Liveness) and levels are given. This paper proposes a

Precedence (Until) properties. Among the levese in . his mo e a

properties studied are: Partial Correctness, Global "presentation" of each existing module at the
highest level of abstraction. Traceability between

Invariance, Clean Behavior, Mutual Exclusion, the presentation and the reusable program modulesDeadlock Absence, Termination, Total Correctness, which implement it is established to simplify

Intermittent Assertions, Accessibility, Starvation reusabil ee r conclest ih an exmple
Freedom, Responsiveness, Safe Liveness, Absence reusability. The paper concludes with an example

of Unsolicited Response, Fair Responsiveness and showing reuse of a presentation for a different ap-

Precedence. plication.

In the following reports of this series we use the This is ancillary reading. The software develop-
temporal formalism to develop proof methodologies ment process is examined from the perspective of
for proving the properties discussed here. the software factory, but the adaptation of this mate-

rial for classroom use would take considerable time.
Although this paper concentrates on verification,
the early parts provide a useful introduction to tem- Naur82
poral logic and to the issues of functional program- Naur, P. "Formalization in Program Development."
ming. BIT 22 (1982), 437453.

Manna85 Abstract: The concepts of specification and for-
Manna, Z., and R. Waldinger. The Logical Basis for malization, as relevant to the development of pro-
Computer Programming, Vol. 1: Deductive grams, are introduced and discussed. It is found

Mass.: Addison-Wesley, that certain arguments given for using particularReasoning. Reading, modes of expression in developing and proving pro-
1985. grams correct are invalid. As illustration aformal-

A thorough exploration of some basic data ized description of Algol 60 is discussed and found
types-such as non-negative integers, trees, lists, deficient. Emphasis on formalization is shown to
and sets--as mathematical theories. Although the have to have harmful effects on program develop-
style is rather dry, this book can be recommended as ment, such as neglect of informal precision and
a gentle introduction to logic as it applies to soft- simple formalizations. A style of specifications
ware specification. using formalizations only to enhance intuitive un-

derstandability is recommended.

Martin05 A thoughtful critique of too formal an approach to
Martin, J., and C. McClure. Diagramming Tech- specifications. It is most important to understand
niques for Analysts and Programmers. Englewood that Naur is not opposed to all formalizations, but

only to those that obscure meaning. Essential read-

20 Draft For Public Review SEI-CM-8-1.0

Formal Specification of Software

ing to maintain one's perspective. prehensibility of a system while allowing the shor-
tening of its development time. The effectiveness of

Olive86 a "modularization" is dependent upon the criteria
Olive, A. "A Comparison of the Operational and used in dividing the system into modules. A system

tive As t Cdesign problem is presented and both a convention-
Deductive Approaches to Conceptual Information al and unconventional decomposition are described.
Systems Modeling." Proc. IFIP World Congress It is shown that the unconventional decompositions
1986. Amsterdam: North-Holland, 1986, 91-96. have distinct advantages for the goals outlined. The

Abstract: Conceptual information systems model- criteria used in arriving at the decompositions are

ing languages can be classified in terms of the ap- discussed. The unconventional decomposition, if

proach taken to model the dynamic aspect. Two implemented with the conventional assumption that

basic approaches, operational and deductive have a module consists of one or more subroutines, will

emerged up to now. They are characterized in this be less efficient in most cases. An alternative ap-

paper using a common first order logic framework. proach to implementation which does not have this

This provides a basis for comparison and evalu- effect is sketched.

ation. Both approaches are then compared in a A classic paper on data abstraction as the basis for
number of issues. We have found that deductive modularization. The main example may be dated,
languages -how a number of advantages, which but the substance of the paper is not. Essential
might make further development efforts worthwhile, reading.
Aspects requiring research work are also pointed
out. Parnas77
The title conveys the contents very well. D. L. Parnas. "The Use of Precise Specifications in

the Development of Software." Proc. IFIP World
011e82 Congress 1977. Amsterdam: North-Holland, 1977,
Olle, T. W., H. G. Sol, and A. A. Verrijn-Stuart, eds. 861-867.
Information System Design Methodologies: A Corn- Abstract: This paper describes the role of formal
parative Review. Amsterdam: North-Holland, and precise specifications in the methodological de-

* 1982. velopment of software which we know to be correct.

A collection of papers dealing with the specification The differences between the general use of the word

and design of an information system for an IFIP "specification" and the engineering use of that term

Working Conference. are discussed. The software development tasks that
we are undertaking require a "divide and conquer"
approach that can only succeed if we have a precise

011e83 way of'describing the subproblems. It is shown how
Olle, T. W., H. G. Sol, and C. J. Tully, eds. predicate transformers and abstract specifications
Information System Design Methodologies: A Fea- can be used when design decisions are made. Two
ture Analysis. Amsterdam: North-Holland, 1983. examples of the use of abstract specifications are

described and detailed specifications are included.
A continuation of the study of information system

specification methodologies begun in [011e82]. Contains a definition of specifications, a list of
reasons for having specifications, and a list of

Olle86 reasons for having precise abstract specifications.

Olle, T. W., H. G. Sol, and Verrijn-Stuart, A. A., Essential reading.

eds. Information System Design Methodologies: Im- Partsch83
proving the Practice. Amsterdam: North-Holland, PartschH"1986. Partsch, H., and R. Steinbruggen. "Program Trans-

formation Systems." ACM Computing Surveys 15
Another collection of papers dealing with the speci- (1983), 199-236.
fication and design of an information system for the
IFIP Working Conference. Abstract: Interest is increasing in the transfor-

mational approach to programming and in mechan-

Parnas72 ical aids for supporting the program development
process. Available aids range from simple editor-

Pamas, D. L. "On the Criteria to be Used in Decom- like devices to rather powerful int4ractive transfor-
posing Systems Into Modules." Comm. ACM 15 mation systems and even to automatic synthesis
(1972), 1053-1058. tools. This paper reviews and classifies transfor-

mation systems and is intended to acquaint theAbstract: This paper discusses modularization as a reader with the current state of the art and provide
mechanism for improving the flexibility and com-

SEI-CM-8-1.0 Draft For Public Review 21

Formal Specification of Software

a basis for comparing the different approaches. It the appearance of [Birrelt85].
is also designed to provide easy access to specific
details of the various methodologies. Ramamoorthy86

This survey on the transformational development of Ramamoorthy, C. V.. V. Garg. and A. Prakash.
programs from specifications should definitely be "Programming in the Large." IEEE Trans Soft-
examined, ware Eng SE- 12 (1986). 769-783.

Abstract: Ad hoc programming techniques do not
Partsch86 work in the development of big software systems
Partsch, H. "Transformational Program Develop- The problems faced in developing large software
ment in a Particular Problem Domain." Science of include starting from fuzzy and incomplete requre-
Comp. Programming 7 (1986), 99-241. ments, enforcing a methodology on the developers.

coordinating multiple programmers and managers,
Develops a suite of programs for the application achievinS desired reliability and performance in the
domain of context-free languages by transformation system. managing a mulitude of resources in a
of specifications. The transformations are carried meaningful way. and completing the system mnthin a
out in the CIP wide-spectrum language (see limited time frame. We look at some of the trends in
[Bauer8l D. The 110 references are invaluable, requirement specificanon. life cycle modeling, pro-

gramming environments, design tools, and other
Peterson8l software engineering areas for tacklng above prob-
Peterson, 1. L. Petri Net Theory and the Modeling of lems. We suggest several ;hase-independent and
Systems. ;Englewood Cliffs, N. J.: Prentice-Hall, phase-dependen techniquesfor programmmng in the
1981. large. It is shown how research i automaac pro-

gramming, knowledge-based systems. metrics, and
A very readable introduction to Petn nets, with a programming environments can make a stgnificant
good selection of examples of their application. difference in our ability to develop large systems.

An excellent survey of the entire development proc-
Ramamoorthy78 ess of large software systems. Should be read for
Ramamoorthy, C. V., and H. H. So. "Software re- its emphasis on a proper infrastrutcre for the devel-
quirements and specifications: status and opment task.
perspectives." In Tutorial: Software Methodology,
C. V. Ramamoorthy and R. T. Yeh, eds. Silver Relsg85
Spring, Md.: IEEE Computer Society Press, 1978, Reisig, W. Petri Nets An Introduction. Berlin:
43-164. Springer-Verlag, 1985.

Abstract: This report surveys the techniques. lan- An excellent introduction to Petri nets with a good
guages and methodologies that have been and are selection of examples of their application. Tends to
being investigated for the specification of software be more formal than [Peterson8l].
throughout all phases of development from the early
conception stage to the detailed design stage. The
vast scope of techniques can only be understood by Rombach87
providing a framework so that they can be H. Dieter Rombach. Software Specification: A
categorized. We suggest a classification scheme Framework. Curriculum Module SEI-CM-1 1. Soft-
based on the scj'rware system life cycle hoping that ware Engineering Institute, Carnegie Mellon Univer-
the purpose, content and requirements of a partic- sity. Oct. 1987.
ular technique can be justified and evaluated. Sum-
mary descriptions of significant individual tech- Schwartz87
niques are included to supplement the overall cate- Schwartz, M. D.. and N. M. Delisle. "Specifying a
gory description. Lift Control System with CSP." In Proc 4th Inter-
Besides being an inventory of what has been done. ,ational Workshop on Software Specification and
the report is intended to provide a perspective of the Design, Harandi, M. T., ed. Silver Spring, Md.:
area. Within our framework, we hope to spot those IEEE Computer Society Press, 1987, 21-27.
aspects and problems that have not been addressed
adequately and suggest relevant concepts and ideas Abstract: CSP is a language and mathematical the-
that may be used to tackle these problems and solve ory that is well suited for specifying the functional
them, ultimately behavior of embedded computer systems applica-

tions. Using a lift control system as an example. weAn early survey of specification methodologies, illustrate a technique for writing specifications in
Should still be examined, but is less important since CSP. We start by formalizing the problem state-

22 Draft For Public Review SEI-CM-8-1.0

Formal Specification of Software

ment as predicates that define the legitimate se- plications of functions can occur.
quences of events. Next, we define a CSP process A functional programming language with these
that is capable of generating all legitimate se- properties is presented and its use as a specification
quences of events. This CSP process is an ex- tool is demonstrated on a series of examples. Al-
ecutable model that can be tested and later trans- though such a notation lacks the power of some
formed into an efficient implementation, imaginable specification languages (for example. in

This paper presents a specification of the elevator not allow existential quantifiers), it has the advan-
problem. The main emphasis is on the specification tage that specifications written in it are always ex-
of a single elevator, but a system of elevators is also ecutable. The strengths and weaknesses of this ap-
briefly discussed. proach are discussed, and also the prospects for the

use of purely functional languages in prodi.ction

Shaw8l programming.

Shaw, M.. ed. Alphard: Form and Content. New An exposition of the functional language Miranda,
York: Springer-Verlag, 1981. in which recursion equations are combined with

some notation from set theory. This set notation
A collection of papers dealing with Alphard, a lan- allows the functional programming language
guage for specification and programming. The Miranda also to be regarded as a specification Ian-
specification of data types in Alphard is in terms of guage.
an abstract model.

Veloso85
Specs87 Veloso, P. A. S., and A. L. Furtado. "Towards
Harandi, M. T., ed. Proc. 4th International Work- simpler and yet complete formal specifications." In
shop on Software Specification and Design. Silver Information Systems: Theoretical and Formal
Spring, Md.: IEEE Computer Society Press, 1987. Aspects, A. Semadas, 1. Bubenko, and A. Olive, eds.

A collection of case studies that solve four specifi- Amsterdam: North-Holland, 1985, 175-198.
cation problems set by the workshop organizers in Abstract: A methodology for the formal specifica-
advance of the workshop. Three of the problems tion of data base applications is proposed, which is
have been adopted by the SEI as standard examples. constructive and leads to simpler and shorter speci-
Essential reading. fications by giving a separate treatment to certain

general assumptions.
Standard83 729-1983. GoGiven two states of an information system that is
ANSI/IEEE Standard 729-1983. "Glossary of Soft- defined in Prolog. A plan generator determines the
ware Engineering Terminology." In Software Engi- sequence of events that is to lead from one state to
neering Standards. New York: The Institute of the other.
Electrical and Electronics Engineers, 1984.

The initial definition of specification in the module Wing87
philosophy section is taken from this glossary. Wing, J. M. "A Larch specification of the library

problem." In Proc. 4th International Workshop on
Turner85 Software Specification and Design, Harandi, M. T..
Turner, D. A. "Functional Programs as Executable ed. Silver Spring, Md.: IEEE Computer Society
Specifications." In Mathematical Logic and Pro- Press, 1987, 34-41.
gramming Languages, C. A. R. Hoare and Abstract: A .claim made by many in the formal
J. C. Shepherdson, eds. Englewood Cliffs, N. J.: specification community is that forcing precision in
Prentice-Hall, 1985, 29-54. the early stages of program development can

Abstract: To write specifications we need to be greatly clarify the understanding of a client's prob-

able to define the data domains in which we are lem requirements. We help justify this claim via an

interested, such as numbers, lists, trees and graphs. example by first walking through a Larch specifi-

We also need to be able to define functions over cation of Kemmerer's library problem and then dis-

these domains. It is desirable that the notation cussing the questions that arose in our process of

be higher order, so thatfunction spaces can formalization. Following this process helped reveal
themselves be treated as data domains. Finally, mistakes, premature design decisions, ambiguities,
given the potential for confusion in specifications and incompleteness in the informal requirements.

involving a large number of data types, it is a prac- We also discuss how Larch's two-tiered specica-

tical necessity that there should be a simple syntac- tion method influenced our modifications to and ex-

tic discipline that ensures that only well typed ap- trapolationfrom the requirements.

SEI-CM-8-1.0 Draft For Public Review 23

Formal Specification of Software

An illustration of the two-tiered approach of Larch independent models of how to solve a
by means of an example, an information system that problem-rather than non-constructive. This paper
specifies the operation of a library, should be read for a discussion of the differences

between the two types of specifications.

Yourdon86
Yourdon, E. Structured Walkthroughs, 3rd ed. New
York: Yourdon Press, 1986.

A thorough guide to the organization and manage-
ment of walkthroughs, which are applicable in the
validation of specifications.

Zave84
Zave, P. "The Operational Versus the Conventional
Approach to Software Development." Comm. ACM
27 (1984), 104-118.

Abstract: The conventional approach to software
development is being challenged by new ideas,
many of which can be organized into an alternative
decision structure called the "operational" ap-
proach. The operational approach is explained and
compared to the conventional one.

Argues for problem-oriented specifications that are
executable by a suitable interpreter and then trans-
formed into efficient implementations.
"Conventional approach" refers to informal, natural
language requirements definitions. Zave's argu-
ments agree with the SF philosophy of specification
expressed in [Berztiss86b].

Zave86
Zave, P., and W. Schell. "Salient Features of an
Executable Specification Language and its
Environment." IEEE Trans. Software Eng. SE-12
(1986), 312-325.

Abstract: This paper presents the executable speci-
fication language PAISLey and its environment as a
case study in the design of computer languages. It
is shown that PAISLey is unusual (and for some
features unique) in having the following desirable
features: 1) there is both synchronous and asyn-
chronous parallelism free of mutual-exclusion prob-
lems, 2) all computations are encapsulated, 3) spec-
ifications in the language can be executed no matter
how incomplete they are, 4) timing constraints are
executable, 5) specifications are organized so that
bounded resource consumption can be guaranteed,
6) almost all forms of inconsistency can be detected
by automated checking, and 7) a notable degree of
simplicity is maintained. Conclusions are drawn
concerning the differences between executable
specification languages and programming lan-
guages. and potential uses for PAISLey are given.

An introduction to PAISLey, a language for the
specification of control systems. PAISLey specifi-
cations are operational-they are implementation-

24 Draft For Public Review SEI-CM-8-1.0

UNLIMITED, UNCLASSIFIED
SECURITlY CLASSIFICATIO~N OF TIS PAGE

REPORT DOCUMENTATION PAGE

REZPORT SECURITY CL.ASSIFICA71ON 11b. RESTRICTIvE MARKINGS

UNCLASSIFIED NONE

2NIA APPROVED FOR PUBLIC RELEASE
'b OELASIIAONO GALGCEUL DISTRIBUTION UNLIMITED

NIA
A p qIEAVIRNG ORGANIZATION REPORT NUBERIS) 5 MONITORING ORGANIZATION REPORT Nu-IBERIS)

SEI-CM-8-1 .0

6& N4AME OF PERFORMING ORGANIZATION 6. OFFICE SYMBOL 7&. NAME OF MONITORING ORGANIZATION
(itl appiuc~bIa)

SOFTWARE ENGINEERING INST. jSE I SEI JOINT PROGRAM1 OFFICE

6c. AOORESS (City. State and ZIP Cadet 7b. ADORESS (City. State *Ad ZIP Code)

CARNEGIE MELLON UNIVERSITY ESD/AVS

PITTSBURGH, PA 15213 HANSCOM AIR FORCE BASE, MA 01731

Be. NAME OF FUNOING/SPONSORING b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER1

ORGANIZATION liI applicble 19290O0

SEt JOINT PROGRAM OFFICE j ESD/ AVS F968C03

Bc- AOORESS (City. State and ZIP Codal 10 SOURCE OF FUNO01NG NOS. _______

CARNEGIE MELLON UNIVERSITY PROGRAM PROJECT TASK WORK UNI1T

PITTSBURGH, PA 15213 ELEMENT NO. No. No. F4O.

_________________________________ A 3752F N/A I N/A N/A
it. TITLE IfRln Ud* SdCUI~,ty Cia..I(fI0II

0 Formal Specification of Software__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _

PERSONAL AUTI4OR(SI

Alfs Berztiss, University of Pittsburgh
13a. TYPE OF REPORT 13m. TIME COvEREO 14 CATIE OF REPORT (Y.. M.. Deyl I5. PAGE COUNT

FNLIFROM _____TO ____October, 1987 24

16. SUPPLEMENTARY NOTATION

17, COSATI CODES i t SUBJECT TERMS iCon AWi iae o rowerma atneceiiiry end identify by block mnlimqI

FIELO GROUP Sue GA formal specification verificationIsoftware specification formal method

19. ABSTRACT (Co ntiue on wseif 4Ineesd' and identify by block qs.,nbitp

This module introduces methods for the formal specification of programs and large

software systems, and reviews the domains of application of these methods. Its
emphasis is on the functional properties of software. It does not deal with the

specification of programming languages, the specification of user-computer interfaces,
or the verification of programs. Neither does it attempt to cover the specification of

distributed systems.

20. OISTRISUTION/AVAILASILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIEO/UNLIMITEO jpSAME AS RPT. 0 OTIC USERS C1 UNCLASSIFIED, UNLIMITED DISTRIBUTION
22a. NAME OF RESPONSIBLE INOIVIOVAIL 22U TELEPHONe NUMBER 122c. OFFICE SYMBOL

JOHN S. HERMAN, Capt, USAF Incude AroCode) ESD/AVS
1412 268-7630 (SET JPO_

00 FORM 4- - P E OITIONOF IJAN 73 IS OBSO1 LETE. ITNLTMTTFTL_ iTmrl ACT~yrst

The Software Engineering Institute (SEI) is a federally fundad research and development center, operated by Carnegie
Mellon University under contract with the United States Department of Defense.. The SEI Software Engineering Curriculum Project is developing a wide range of materials to support software engineering
education. A currxculum module (CM) identifies and outlines the content of a specific topic area, and is intended to be
used by an instructor in designing a course. A support1 materials package (SM) contains materials related to a module
that may be helpful in teaching a course. An educational materials package (EM) contains other materials not necessarily
related to a curriculum module. Other publications include software engineering curriculum recommendations and course
designs.

SEI educational materials are being made available to educators throughout the academic, industrial, and government
communities. The use of these materials in a course does not in any way constitute an endorsement of the course by ht
SEI, by Carnegie Mellon University, or by the United States governmenL

Permission to make copies or derivative works of SEI curriculum modules, support materials, and educational materials is
granted, without fee, provided that the copies and derivative works are not made or distributed for direct commercial
advantage, and that &I copies and derivative works cite the original document by name, author's name, and document
number anid give notice that the copying is by permission of Carnegie Mellon University.

Comments on SEI educational materials and requests for additional information should be addressed to the Software
Engineering Curriculum Project. Software Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania
15213. Electronic mail can be sent to education@sei-cmu.edu on the Internet.

Curriculum Modules (' Support Materials available) Educational Materials

CM-I (superseded by CM- 191 EM-1 Software Maintenance Exercises for a Software
CM-2 Introduction to Software Design Engneeing Project Course
CM-3 The Software Tedinic ie Prces EM-2 APSE Interactive Monitor: An Artifact for Software

CIA- Sotwar CoW~d Maagemnt*Engineering Education
CM-5 Snotware rotcigaon EM-3 Reading Computer Progrm'.s: Instructors Guide and

CM-S Infomaton P'OW~~flExercises
CM46 Software Safety
CM-7 Assurance of Software Ouality.CM-8 Fermal Specification of Sottwre*
CM-S Unk Testiing and Analysis
CM-10 Models of Software Evolution: Ufa Cycle and Process
CM-t I Software Specifcations: A Framework
CM-12 Software Metrics
CM- 13 hntodluction to Software Verification and Validation
CM-14 Itellectual Prope"t Protection for Software
CM-IS Software Development aid UceniN Contracts
CM-IS Software Development Using VDM
CM-17 User Iterface Developnienr
CM-IS [superseded by CM-231
CM-19 Software Reqiiements
CM-20 Formal Verification of Programs
CM-21 Software Project Management
CM-22 Software Design Methods for Real-Time Systems*
CM-23 Technical Writing for Software Engineers
CM-24 Concepts of Concurrent Programming
CM-25 Language and System Support for Concurrent

Programming*
CM-26 Understandng Program Dependencies

